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Completely arithmetic formulations, which possess exactly the same conservation 
laws and symmetry as their continuum counterparts, are given for both Newto- 
nian and special relativistic mechanics. Applications are made to new models of 
fluid flow, vibration, diffusion, planetary evoultion, biological self-reorganiza- 
tion, and relativistic oscillation. Computer examples are described and discussed. 

1. I N T R O D U C T I O N  

It is somewhat startling that the foundations of both Newtonian and 
special relativistic physics can be reformulated using only ari thmet ic ,  with 
the very same conservation laws and symmetry following as in cont inuum 
physics. Moreover, not only does the arithmetic approach simplify the tools 
necessary for such theoretical considerations, but, from it, new types of 
models of natural phenomena follow readily and in a reasonable way. In 
this paper  we will explore both the theory and the application of the 
arithmetic approach, which is motivated by, and implemented through, 
modem high-speed digital computer technology. 

2. GRAVITY 

It is always difficult to know how to begin correctly, so let us develop 
some intuition first by studying the following simple experiment with a 
force with which we are all familiar, namely, gravity. 

If  a particle of mass m, situated h feet above ground, is dropped from a 
position of rest, one can approximate its height x above ground every At 
seconds as it falls. For example, if h = 400 and if one has a camera  whose 
shutter time is At, then one can take pictures of the fall at the times 
t k = k A t ,  k =0,  1,2,. . . ,  and, from the photographs and the knowledge that 
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h =400, approximate the heights x ( t ~ ) = x  k above ground by simple r a t io  
and proportion. Suppose, then, that this has been done for At = 1.0, t h a t  is, 
for a very slow camera, and that, to the nearest foot, one finds 

x0 =400, xl =384, x2 =336,  x3 =256, X4 = 144,  X 5 = 0  

These data are recorded in column A of Table I. 
Since it is always convenient mathematically to know how far a par t ic le  

has traveled from its initial position, we first rewrite our data as 

x o = 4 0 0 - 0 ,  x I = 4 0 0 -  16, x 2 = 4 0 0 - 6 4  

x 3 =400--  144, x 4 = 4 0 0 - 2 5 6 ,  x 5 = 4 0 0 - 4 0 0  

in which each term preceded by a negative sign is the distance traveled in 
time ta. Each of these terms, however, is seen readily to have a factor o f  16, 
so that we may rewrite our data next as 

X o = 4 0 0 - 1 6 ( 0  ), X l = 4 0 0 - 1 6 ( 1  ), 

x 3 = 4 0 0 - 1 6 ( 9  ), x 4 = 4 0 0 - 1 6 ( 1 6 ) ,  

x 2 = 4 0 0 - 1 6 ( 4  ) 

x 5 = 4 0 0 - 1 6 ( 2 5 )  

But, each term in parentheses is a perfect square, so that we now have 

x o = 4 0 0 -  16(0) 1, x, = 4 0 0 -  16(1) 2, x 2 = 4 0 0 -  16(2) 2 

x 3 = 4 0 0 -  16(3) 2, x4 = 4 0 0 -  16(4) 2, x 5 = 4 0 0 -  16(5) 2 

Finally, since A t = l ,  we note that t o = 0  , t l = l ,  t2=2 ,  t3=3  , t 4 = 4  , t 5 = 5 ,  
which implies 

x o = 4 0 0 -  16(/o) 2, x t =400- -  16(/t) 2, x 2 = 4 0 0 - 1 6 ( / 2 )  2 

x 3 = 4 0 0 -  16(t3) 2, x4 =400- -  16(t4) 2, x 5 = 4 0 0 -  t6(t5) 2 

TABLE I.  Velocity and Acceleration Calculations 

A B C D E 
Time Measured Velocity Acceleration Velocity by Acceleration 

height by calculus by calculus arithmetic by arithmetic 

t o = 0  Xo = 400 V o = 0  a o =  --32 Vo=0  a o =  --32 
t t = l  xl  = 384 v l =  --32 a t =  --32 v l =  --32 a l =  --32 

t z = 2  x2 = 336 v z =  --64 a 2 =  --32 o2=  --64 a 2 =  --32 

t 3 = 3 x 3 = 256 v 3 = --96 a 3 = --32 v 3 = --96 a 3 = - 3 2  
t 4 = 4  x4 = 144 v4 = --128 44 = --32 04= --128 a4 ----- --32 

t 5 = 5  x s = 0  v s =  --160 a 5 =  --32 v s =  --160 
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or, more succinctly, 

x~ = 4 0 0 -  16(tk) 2, k =0 ,  1,2,3,4,5 (1) 

Our problem next is how to proceed with (1). From the continuum 
point of view, one interpolates and extrapolates to yield the classical 
formula 

x = 4 0 0 -  16t 2 (2) 

which is now amenable to the full power of the calculus. In this fashion one 
has, almost immediately, 

v = - 3 2 t  (3) 

a = - 3 2  (4) 

Using (3) and (4), we have recorded in column B of Table I the particle's 
velocities, and in C the accelerations, at the times to, t~, t 2, t3, t4,  t 5 during 
its fall. 

If our thinking, however, had been fashioned in a computer-dominated 
environment, then, because the real number system is not the number 
system of any computer, we might have chosen to store (1) in a memory 
bank and then tried to develop simple algebraic formulas for velocity and 
acceleration. We will show now how this can be done in such a fashion that 
the results are identical with those obtained from (2). 

At the times that the pictures were taken, let P ' s  velocity be denoted by 
v k = v(t~), k = 0, 1,2, 3, 4, 5. Since P was dropped from a position of rest, let 

Vo =o  (5) 

For k >0, let v k be defined as an average rate of change of position with 
respect to time by 

Vk+ 1 At- V k _ X k + l  - -  X k 
2 At ' k =0 ,  1,2,3,4 (6) 

The left-hand side of (6) is, of course, a smoothing operator, which is 
perfectly reasonable when dealing with experimental data. However, (6) is 
not as convenient from the computer viewpoint as is its equivalent form 

2 
k =0,  1,2,3,4 (6') 

which is a recursion formula. Substitution of k = 0, 1,2, 3, 4 into (6') yields, 
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in order, v I = - 3 2 ,  1) 2 =-64, v 3 = - 9 6 ,  v 4 = -  128, v 5 = - 1 6 0 ,  which are 
recorded in column D of Table I and are identical to the entries in 
column B. 

Next, from a deterministic viewpoint, one would know a part ic le 's  
initial position and velocity, but not its initial acceleration. The acceleration 
is intimately related to the force, which is at present under study. Thus, a 0 is 
not known and must be generated by some formula. If a( tk )=ak ,  we 
assume simply that 

1 ) k + l -  1)k 
a ~ -  At ' k = 0 ,  1,2,3,4 (7) 

From (7) and the values of v just found, we have a 0 = a 1 = a 2 = a 3 ----- a 4 = 

--32, which are recorded in column E of Table I and are identical with the 
corresponding entries in column C. Formula (7) does not allow a de termina-  
tion of a s, because this would require knowing v 6. Nevertheless, the entries 
indicate quite clearly that the acceleration due to gravity is constant with the 
value - 32. 

Now, just because the arithmetic formulas (5)-(7) have given the s a m e  
results as the continuous formulas (3)-(4) does not mean that we have  a 
formulation which has physical significance, since physics is characterized 
by conservation laws and symmetry. Surprisingly enough, our approach  to 
gravity will also yield conservation and symmetry (Greenspan, 1973; 1980a). 
We will, however, for simplicity, confine attention here only to the conserva- 
tion of energy. 

We recall now the fundamental Newtonian dynamical equation 

F = m a  (8) 

the kinetic energy formula 

K = ½mv 2 (9) 

and, for a falling body with a = - 3 2 ,  the potential energy formula 

V =  32mx (10) 

The classical energy conservation law is simply 

K t + V t = K o + V o ,  t > O  (11) 

However, the data in column A of Table I were obtained from a sequential  
set of photographs, that is, at distinct times t k = kAt,  so that in p lace  of 
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(8)-(10) we can only assume 

F,~ = ma  k , 

K k - -  1 2 
- -  ~ l ' r l ~  k , 

V k = 32mxk, 

k = 0 , 1 , 2  . . . .  

k - 0 , 1 , 2  . . . .  

k = 0 , 1 , 2  . . . .  

Next, define work Wn, n = 1,2, 3, . . . ,  by 
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Then, by (5), (7) and (12) 

(12) 

(13) 

(14) 

n-1 
=½m E 

i = 0  

( v~+ I + v j ) (  v~+ l - -  v i )  

_ 1  2 1 2 
- -  ~rnv~ -- ~ m v  o 

so that, from (14), 

W , , = K , , - K  o , n = 1,2,3 . . . .  (16) 

which, incidentally, is independent of the structure of F and is a fundamen- 
tal result in continuum mechanics. On the other hand, since ak = --32, one 
has from (12) and (15) that 

n - - I  

W n - - - 3 2 m  E ( x i + l - x i ) = - 3 2 m x .  +32mx o 
i = 0  

W . = - V ~ + V  o, n = 1 , 2 , 3  . . . .  (17) 

Finally, elimination of W~ between (16) and (17)yields 

K , , + V , , = - - K o + V o ,  n = 1 , 2 , 3  . . . .  (18) 

in complete analogy with (11). Moreover, since K o and V o are determined 

so that 

n - - I  

W n = m  ~ (Zi+l--Xi)( l)i+l-~i-A-t ) 
i = 0  

n - - I  

w.-- E (15) 
i = 0  
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entirely from the initial data x 0 and v 0, it follows that K 0 and V 0 are the 
same in both (I1) and (I8), so that our arithmetic approach conserves 
exactly the same total energy, independently of At, as does classical Nev~to- 
nian theory. 

3. COMPUTER MODELING 

Before extending the ideas of Section 2 to forces which are m o r e  
complex than gravity, we must interpose some remarks about the way in 
which we will model. 

Our primary aim at present is to simulate the actual forces, in the w a y  
they occur, in phenomena relating to solids, liquids, and gases. These forces 
are of two types, the long-range forces, like gravity and gravitation, which 
act on all atoms and molecules of a given substance, and the local forces,  
which are those which occur between each atom and its immediate neigh- 
bors only. Classically, the local forces are of the following general nature. If, 
for example, two molecules are pushed together then they repel, if pul led 
apart then they attract, and repulsion is of a greater order of magni tude  
than is attraction. A typical force formula for such an interaction might  
have a magnitude given by 

F=_I_~ 1 
r8 rl 2 (19)  

Our modeling procedure, then, will be as follows. A given solid, liquid, 
or gas will be represented by a finite set of particles. To each particle, two 
types of forces will be applied: (a) a long-range force, like gravity or 
gravitation, which will apply uniformly to all particles, and (b) a local force,  
similar to (19), which acts only between each particle and its immediate  
neighbors. Since the number of particles which can be handled effectively 
on a computer will be far less than the number of atoms and molecules in 
any interaction, we will simply decrease the exponents in (19) to com-  
pensate. 

4. EXTENSIONS 

For A t>0 ,  let t~=kAt, k = 0 , 1 , 2  . . . . .  Consider now a system of 
particles P,., i = 1,2, 3 . . . . .  n. Let P~ have mass m i, and, at time tk, be located 
at ri. k with velocity vi, k and acceleration ai, k. In analogy with (6) and (7), we 
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assume that 
vi.k+t +Vi,a = ri a+l - r i  k (20) 

2 At 

Vi,k+l --¥i,k (21) 
a i ' k :  At 

If Fi, k is the force acting on Pi at time tk, then force and acceleration are 
assumed to be related by 

Fi, k : - m i a i ,  k (22) 

If F~, k is a central, " 1 / r  ~" force, like gravitation or Coulombic .interaction, 
then the arithmetic, conservative force formula (Greenspan, 1980a, p. 11) is 

a(ri, k+l-1- ri, k) F/, k -- 
ri, kr~,k+z(ri, k + r~,k+~) 

More generally (Greenspan, 1980a, p. 31), if Pi interacts with the other n - 1 
particles and the force is attractive like 1/r p and repulsive like I / r  q, then 
the arithmetic, conservative force on Pi is given by 

[ ( G [~ ~'--g ( ri~ ' k r/P'k~+-12 ) ] 
Fi, k ~ m i ~ m j  -- p - I  p - i  [ j=l rij,k ru, k+ l[ rij,k q- rij, k + l ) 

jvai 

H[Y,~--Z( ri~.,kriqJ+-i~ ) ] (r,,k+, +r,  -rj, k+, -rj,)[ 
1 

q--I q--I r~j,~ r~j.k+ ~(r~j,k + rtj.k+ ~ ) 
d 

(23) 

where G >10, H ~> 0, q > p 1>2, and rq. k is the distance between Pi and Pj at 
time t k. 

Note that, with regard to the motion of a single particle, arithmetic 
conservative formulas are special cases of the following general formula 
(Greenspan, 1980a). For any Newtonian potential qffr), let 

Fk------ d?(rk+l)--~(r~) rk+l+r~ (24) 
rk+l--rk rk+l+rk 

Arithmetic formula (24) conserves exactly the same energy, linear and 
angular momentum as does its continuous, limiting counterpart 

o¢,) r (25) 
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Observe, also, that only for simple forces, like gravity, do the continu- 
ous and the discrete approaches yield exactly the same dynamical behavior. 
In general (LaBudde and Greenspan, 1976), the two approaches yield 
results which differ by terms of order (At) 3. 

Finally, note that a discrete conservative Hamfltonian theory has also 
been developed recently (LaBudde, 1980). 

5. DISCRETE MODELS 

A variety of particle, or discrete, models have been developed in the 
spirit of Section 3. These have been devised for simulations of string 
vibrations; heat conduction and convection; free surface, laminar and 
turbulent fluid flows; jet stream evolution; shock wave generation; elas- 
tic vibration; porous flow; stress wave propagation; planetary evolution; 
and biological self-reorganization (Greenspan, 1980a; 1981; Reeves and 
Greenspan, 1980). For illustrative purposes, we will now summarize several 
typical computer simulations and indicate, wherever possible, the derived 
insights and advantages. 

Because of the almost omnipresence of fluids, that is, of liquids and 
gases, let us begin by examining a completely conservative fluid model 
(Greenspan, 1974a) which utilizes the formulas of Section 4. Figure 1 shows 
how particles of a liquid emerge from a nozzle at relatively low speeds. This 
flow is what is usually called laminar. As the particle velocities are increased 
moderately, the rows of particles maintain their relative positions, as shown 
in Figure 2, but the flow is becoming chaotic. The disturbances arise 
because the increase in speed brings particles closer to each other and 
induces relatively large repulsive forces. Finally, in Figure 3, the speeds have 
been increased to the point where the rows no longer maintain their relative 
positions, and the motion is called turbulent. Indeed, if a vortex is defined 
as a set of particles rotating together in either a clockwise or a counterclock- 
wise direction, then what we have called turbulent flow exhibits the rapid 
appearance and disappearance of vortices, which is, indeed, the engineering 
rule-of-thumb definition. It is interesting to note that our model allows for  
transition from laminar to turbulent flow merely by an increase in speed. In 
contemporary continuum mechanics, not only is this not possible, but there 
is, as yet, no realistic model of turbulence (Saffman, 1968). 

As a second application of the conservative formulas of Section 4, 
Figure 4 shows the elastic vibration of a flexible bar from a position of 
tension (Greenspan, 1974b). What emerges clearly is that the bar does not  
swing "smoothly," but flutters up, due to waves which travel through the 
bar as part of its gross upward motion. 
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(b) 

V . . . . .  (c) 

_ (d) 

(f)  

Fig. 1. Laminar flow. 

(g) 

With regard to the examples above, note that the computer implemen- 
tation of conservative modeling is relatively expensive, in the sense that the 
dynamical difference equations are implicit and, therefore, require the 
solution of a system of nonlinear algebraic equations at each time step. 
However, without sufficient resources, one can still continue in the spirit of 
the modeling, as described in Section 3, by using explicit difference equa- 
tions (Greenspan, 1980a). In this fashion, economy is gained at the expense 
of exact conservation. We will describe next several models developed using 
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~ ~  (,-,) 

(b) 

(c) 

(d) 

(e} 

Fig. 2. Chaotic flow. 

the explicit leap-frog formulas. It should be remembered, however, that this 
modeling could have been done also with the conservative formulas of 
Section 4. 

Figure 5 shows the entry and dispersion of a liquid drop into a liquid 
well, the accompanying free surface wave generation, and the flow over the 
right wall (Greenspan, 1980b). The drop particles, which have been darkened 
in the figure, are shown initially at the time when the drop has flattened and 
is ready to enter into the well. The fluid motions are analyzed easily, as 
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(a) 

(b) 

(c} 

(d) 
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(e} 

Fig. 3. Turbulent flow. 

shown in Figure 6, by following the behavior of various liquid columns. In 
this fashion the gross behavior deduced is that particles which were origi- 
nally on the fluid surface move to the right, while those below the surface 
have come up to the left to cover the sinking drop particles. Extension of 
this example to three dimensions is straightforward and yields completely 
analogous results. 

Figures 7 and 8 show two sequential stages in the evolution of a 
lunar-type body from a hot, swirling gas (Greenspan and Collier, 1978). 
This model includes heating from a sun and heat radiation from the dark 
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Fig. 4. Vibration of a bar. 

side of the body. Figure 8 shows solidified (hexagonal) particle formations 
interior to the body and on the surface, in addition to liquid particles both 
on the surface and below the surface. Moreover, the figures show that 
particle modeling allows for self-reorganization. In Figure 7 one sees that 
the heavier particles have organized into two groups, and then, in Figure 8, 
that the two groups have moved towards each other. 

The self-reorganization capability of particle modeling was also applied 
to an area of biology which is concerned with cell sorting. Recent experi- 
ments (Steinberg, 1963), for example, show that when tissue mesoderm, 
endoderm, and ectoderm cells are separated, the cells self-reorganize into 
the original mesoderm, endoderm, and ectoderm configuration. Figure 9 
shows a particle model (Greenspan, 1981) of such a self-reorganization. 
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Fig. 9. Biological  cell sor t ing.  

We note finally that in each of the models developed thus far, the 
behavior has been described qualitatively. However, inclusion of experimen- 
tal data into the force formulas has led recently to a quantitatively accurate 
model (Reeves and Greenspan, 1980) of stress wave propagation in both 
tapered and untapered aluminum bars. 

6. SPECIAL RELATIVITY 

Next, let us show that an arithmetic basis exists for the other broadly 
accepted, deterministic theory of mechanics, that is, special relativity 
(Greenspan, 1980a). For simplicity, we will do this in one space dimension 
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only and for variety will emphasize the symmetry property rather than  
energy conservation, which was emphasized for Newtonian mechanics. "The 
extension to more than one dimension, the establishment of the conserva- 
tion laws, and the proof that E = m c  2 all follow from the basic numerical 
formulas to be given and from the arithmetic analogs of various relativistic 
concepts. 

Consider, then, two Euclidean coordinate systems X Y Z  and X ' Y ' Z "  
which at some initial time coincide. Let X ' Y ' Z '  be the rocket frame and let 
it be in constant uniform motion relative to lab frame X Y Z .  Assume tha t  
the constant relative speed is u and that the axes Y and Y' are always 
parallel, as are the axes Z and Z'. For At >0,  an observer in the lab f rame 
makes observations at the distinct times t k = kAt ,  k =0,  1,2 . . . . .  Using an 
identical, synchronized clock, an observer in the rocket frame makes ob- 
servations at the times t~, where t~ on the rocket clock corresponds to t k on 
the lab clock. 

Now, if particle P is at (x~, Yk, Z~) in the lab frame at time t k, while it 
is at (x~, y~, z ; )  in the rocket frame at time t;, then the variables are related 
by the Lorentz transformation 

x '  k = c( x k - u t k ) / (  c 2 - u2) '/2 (26) 

Y~ = Yk (27) 

= ( 2 8 )  

, ' k = ( c 2 t k - - U X , ) / [ C ( C 2 - - U 2 ) ' / a  ] (29) 

where c is the speed of light. 
In the lab flame, let particle P be in motion in the X direction. Then,  at 

time tk, P ' s  velocity v( tk)=  v k and acceleration a ( tk)=  a k are defined b y  

v k = Axk / /A t  k (30) 

ak = A V k / A t  k (31) 

where the forward difference operator A is defined in the usual way by 

Af( tk)  = f (  tk+ I ) -- f (  t k) 

' ' ' by In the rocket frame, at time tk, one defines v k and a k 

t P 
" _~. A X k / / A t  k o k 

A,/At' t ~ 1) k k a k  

(32) 

(33) 
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In order to find the relationship between v k and v~, and between a k and a~,, 
note that (26)-(29) imply 

ax; ,  = ¢(ax  - u a O / (  ¢ - 

Ay~ = Ay  k 

A z ; = A z  k 

A t r k = ( C 2 A l k - - U A X k ) / [ C ( C 2 - - U 2 )  1/2] 

(34) 

(35)  

(36) 

(37) 

Thus, (32), (34), and (37) imply 

1 3 v k : [ C 2 ( 1 9 k - - U ) ] / ( C 2 - - U l ) k )  (38) 

while (33), (37), and (38) imply 

' c3(c2 -- u2'3/2"~ (39) 
a k = a k 2 2 (c2-uvk)(c -uvk+,) 

Next, we assume that the mass m of particle P depends on its velocity 
in the following way. In the lab frame, the mass m k of P at time t k is 
assumed to satisfy the relationship 

] [  2\1/2 
m k = c m * / [ c  2 --  V k )  (40) 

while its mass m~ at the corresponding time t~ in the rocket frame is 
assumed to satisfy 

m' k _= cm* / (  c 2 --1) k'2 \ I/2) (41) 

In (40) and (41), m* is the rest mass of P and both ]Vk] and IvY] are 
assumed to be smaller than c. 

We now come to the problem of interest. From the dynamical point of 
view, the actual motion of a particle in, say, the lab frame can be de- 
termined from (30) and (31) once an equation which relates force and 
acceleration is given. We will take this equation to be 

c2mk At) k 

S ~ = [ ( c 2 _ , ~ ) (  ~ - v k + , J j  ~ '~ ' /2 " ~ t k  (42) 
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However, by the principle of relativity, in the rocket frame one must have 
symmetry, that is 

2 # ,, 

F~ = c m k Av k (43) 

[(c2-v;<~1(c2-,/~ ~1,,'~ '~,~ k + l i J  

But this is valid only if the right-hand side of (43) maps into the right-hand 
side of (42) under the Lorentz transformation. Fortunately, this is correct, 
since 

c2m'~ Av__~" k _ c 3 m  * 

[ ( c 2 - v ' ~ ) ( c 2 - v ' ~ , ) ]  ';~ ,,,, (<~-v'~2)(c~-v'~,) ''~ a,~ 

c3m * C2mk AD k 

2 2 2 \ I / 2 a k  --  (c 2 Vk)(C Vk+,) [(C2 V~)(C~ ~ ,1','~ A,k . . . .  V k + l ) l  

Note that taking limits in (42) yields the particular form 

c2m do 
F = ~  

c 2 - -  v 2 d t  

of the classical Einstein equation 

F =  - ~  ( m y ) ,  m = c m * / ( c  2 - -  v2) 1/2 

Note also that use of (42) in the lab frame and of (43) in the rocket 
frame implies that the numerical results are related by the Lorentz trans- 
formation. That is, if one were to install identical computers in the lab and  
rocket frames and use force laws (42) and (43), in the respective frames, 
then all resultant computations would be related by the Lorentz transforma- 
tion. Such calculations have been carried out (Greenspan, 1980a) for a 
relativistic harmonic oscillator. 

7. REMARKS 

Let us note first that at a time when instruments for measurement, like 
electron microscopes, atomic clocks, and radio telescopes, are indicating 
fundamental nonlinear behavior in natural phenomena, it is of value to have 
particle modeling available, since it is fully nonlinear. 
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Next, note that with the development of parallel computation technol- 
ogy, we expect to be able to study discrete models which have, approxi- 
mately, 100000 particles with relative ease and minimal expense. 

Finally, let us indicate the fundamental difference between discrete and 
continuum modeling. Suppose one has a glass of water, in which there are, 
say, 1030 molecules. In continuum mechanics, we use the approximation 
10 30 ~ C, where C is that infinite number which represents the cardinality of 
the continuum. In discrete modeling, we use the approximation, say, 10 30 
103 and simultaneously compensate by adjusting molecular parameters. 
Since our conditioning usually leads us to feel more comfortable with the 
continuum approach, the following should be observed. In studying the 
motion of 1030 molecules, we need be concerned only with the motions of 
their centers of mass. These 1030 points, however, form a set of measure zero 
in C points, or, less mathematically, 1030 points are lost entirely in C points, 
so vast is the continuum. The lesson to be learned is that both discrete and 
continuum models are, indeed, only models, or approximations, of the real 
thing. 
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